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We study the algebraic and differential geometric structures of three- and five- 
dimensional *g-unified field theory, with emphasis on the five-dimensional 
*g-unified field theory, in which we derive a new set of powerful recurrence 
relations which hold in a five-dimensional generalized Riemannian manifold 
Xs, prove a necessary and sufficient condition for the existence and uniqueness 
of the solution of the system of the Einstein equations in the first two classes, 
and find a precise tensorial representation of the Einstein connection F~  in 
terms of *gX~. 

1. I N T R O D U C T I O N  

in Appendix  II  to his last b o o k  Einstein (1950) p roposed  a new unified 
field theory  that  would  include both gravitation and electromagnetism. 
Al though the intent o f  this theory was physical,  its exposit ion was mainly 
geometrical.  It may  be characterized as a set o f  geometrical  postulates for 
the space-time X4. The geometrical  consequences  o f  these postulates were 
not  developed very far by Einstein. 

Characterizing Einstein 's  unified field theory as a set o f  geometrical  
postulates for X4, Hlavat2~ (1957) gave its mathematical  founda t ion  for the 
first time. The geometrical  consequences  o f  these postulates have been 
developed quite far, mainly by Hlavat~. 

General izing X4 to n-dimensional  generalized Riemannian  space Xn, 
Wrede (1958) studied Principles A and B given below. But his solution of  
our  (2.8b) is not  surveyable,  probably  due to the complexi ty o f  the higher 
dimensions.  Later, Mishra (1959) also investigated the n-dimensional  gen- 
eralization o f  Principle A, using n-dimensional  recurrence relations. The 
lower dimensional  cases o f  the usual  Einstein unified field theory were 
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investigated by many authors. The four-dimensional case was studied by 
Hlavat~ (1957) and many other geometricians, the two-dimensional case 
by Jakubowicz (1969) and Chung et al. (1983), and the three-dimensional 
case by Chung et al. (1979, 1980, 1981a,b). 

The four-dimensional *g-unified field theory in X4 was first introduced 
by Chung (1963). This theory is convenient for investigating Principle C 
given below. Later, he generalized this theory to the n-dimensional case 
(Chung, 1982). 

The purpose of the present paper is to study the StrUcture of the three- 
and five-dimensional *g-unified field theory. All our investigations and 
considerations are concerned with Principles A and B. 

This paper contains six sections. Section 2 introduces some preliminary 
notations, concepts, and results in 3;,. Section 3 deals with some relations 
in X,, which will be needed in subsequent considerations. Section 4 is 
devoted exclusively to the algebraic and differential geometric structures of 
three-dimensional *g-unified field theory for all classes in X3. In Section 
5 we investigate and study similar topics as in the previous section for the 
first two classes of five-dimensional *g-unified field theory in X s ,  mainly 
considering the derivation of a set of special recurrence relations and the 
solutions of the system of Einstein equations. In the last section we investi- 
gate mainly the solution of the Einstein equations for the third class of 
n-dimensional *g-unified field theory when n -> 4. 

All considerations in the present paper are for all possible classes and 
indices of inertia. 

2. PRELIMINARIES 

This section is a brief collection of basic concepts, notations, and results 
needed in further considerations. All considerations in this section are for 
general n > 1. For these results see Chung (1982), Hlavat~, (1957), Mishra 
(1959), and Wrede (1958). 

2.1. n-Dimensional *g-Unified Field Theory 

The n-dimensional *g-unified field theory (n-*g-UFT hereafter), 
originally suggested by Hlavat~ (1957) and systematically introduced by 
Chung (1963), is based on the following three principles. 

Principle A. Let Xn be an n-dimensional generalized Riemannian mani- 
fold, referred to a real coordinate system x ~ obeying coordinate transforma- 
tion x ~ --> x ~', for which 

Ox' S O  (2.1) 
Ox 
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In the usual Einstein n-dimensional unified field theory (n-g-UFT 
hereafter), the manifold X. is endowed with a general real, nonsymmetric 
tensor gA., which may be decomposed into a symmetric part hA. and a 
skew-symmetric part k x , ,  3 

gA.=hA.+kA. ,  IgA. l#O, IhA.l~0 (2.2) 

However, the algebraic structure in our n-*g-UFT is imposed on X. by the 
basic real tensor .ga~ defined by 

gA, ,gA~ = goA ,gVA = 8;  (2.3) 

It may also be split into a symmetric part *h Av and a skew-symmetric part 
*kay: 

,gA~ =*hA~ +,kA~ (2.4a) 

I*gA~l # 0, I*h~l r 0 (2.4b) 

In virtue of the second relation of (2.4b), we may define a unique tensor 
*hA, by 

tJ *hA. *h a~ = 6 .  (2.5) 

In our n-*g-UFT, we use both *ha. and *h A~ as the tensors for raising 
and/or  lowering indices of all tensors defined in X. in the usual manner, 
with the exception of the tensors gA., hA., and kA. in order to avoid 
notational confusion. We then have 

*kA, = *k ~13 *hA~ *h.~, *g~. = * g ~  *h~ *h,~ (2.6a) 

so that 

*gA. = *hA. + *kA. (2.6b) 

Principle B. The differential geometric structure is imposed on X. by 
the tensor .gA~ by means of a connection F~',. that obeys the transformation 
rule 

02XV ~ X  v A _ F  ~, o F ~ Ox Ox" 
Ox A'ox"' A'.'-O---x~,- A. ~x ~, (2.7) OX"' 

and satisfies the system of equations 

D~ *g*"= - 2 S ~  .gad (2.8a) 

3Throughout the paper, Greek indices are used for holonomic components of a tensor, Roman 
indices for the nonholonomic components of a tensor. In X,, all indices take the values 
1 , . . . ,  n and follow summation convention with the exception of nonholonomic indices 
X, y ,  2, t. 
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where Do, denotes the covariant derivative with respect to I ' ~  and 

S~, = F t~]  (2.9) 

is the torsion tensor of F~.. In virtue of (2.3), the system (2.8a) is equivalent 
to the original system of Einstein equations 

Do, ga~ = 2S2~gA,~ (2.8b) 

Principle C. In order to obtain .gA. involved in the solution for F~., 
certain conditions are imposed. These conditions may be condensed to 

c t  SA = S~., = 0, R ~  = R . ~  = at~v~] 

where Va is an arbitrary vector, and 

v - -  v " t -  ce v 

R,o.A-20f~FIxI,. ] 2FAt,oFI~IM 

The following remarks should be added concerning the usual n-g-UFT. 

Remark 2.1. In n-g-UFT, the algebraic structure is imposed on X. by 
the tensor gx., and the tensor hA. and its inverse h a" are used for raising 
and/or  lowering indices in X.. In this theory the differential geometric 
structure is imposed on X. by g~. by means of the same connection F~. 
satisfying (2.8b). 

Remark 2.2. When the system (2.8) admits a unique solution, the 
connection F~. will be represented in terms of the tensor 

*g~  in n-*g-UFT 

gA. in n-g-UFT 

In our further considerations, the following scalars, tensors, abbrevi- 
ations, and notations are frequently used: 

g=  I*gx.[ ~ 0, D= [*hh.[r 0, t =[*k~.[ 

g =g/b ,  

Kp = *k~2; *k~;; l 

<~ = 8A, " (l)*k~ -- *k~, ~ 

tc = ~ / b  

( p = 0 , 1 , 2 , . . . )  

<P~*k~ = ~P-'~*k7 *k~, 

Ko,.~ = V. *k.+ + V,o *k~. + V~. *k,o~ 

{01 if n i s e v e n  
= if n is odd 

(2.10a) 

(2.10b) 

(2.10c) 

(2.10d) 

(2.10e) 

(2.10f) 
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Here V~ is the symbolic vector of  the covariant derivative with respect to 
the Christoffel symbols *{x~} defined by *hx~ in the usual way.' The scalars 
and tensors introduced in (2.10) satisfy 

Ko = 1; K ,  = k if n is even; Kp = 0  i f p  is odd (2.11a) 

g =  l + K 2 + "  �9 �9 + K,_~ (2 . l ib)  

~V~*kA~ = ( - 1 )  v (P)*k~x, (P)*k A~ = ( - 1 )  p ~V~*k~A (2.11c) 

Furthermore, we also use the following useful abbreviations, denoting 
an arbitrary tensor T~,~ skew-symmetric in the first two indices by T: 

p q r  p q r  

T = To~x = T ~ v  (P)*k~o (q)*k~ (r)*k~ (2.12a) 

0 0 0  
T--  T~x = T (2.12b) 

pqr  p q r  p q r  ( p q ) r  p q r  qpr  

2T, ot~l = T , o ~ -  To,~.A, 2 T,o~ = T,o~+ T~,~, etc. 

We then have 

2.2. Algebraic Prel iminaries  

pqr  qpr  

T,o~ = - TA,o, (2.13) 

In this section several algebraic concepts and results in n-*g-UFT are 
introduced. 

Definition 2.3. The tensor *gA, (or *k~,) is said to be: 

1. Of  the first class if K,_~ ~ 0 
2. Of  the second class with j th  category ( j - 1 )  if 

K2s ~ O, K2s+2 = K2j+4 . . . . .  K._~ = 0 

3. Of  the third class if K2 = K4 . . . . .  K,_~ = 0. 

The solution of the system of equations (2.8a) is most conveniently 
brought about  in a nonholonomic frame of reference, which may be intro- 
duced by the projectivity 

M A  y - * k ~ A  ~ (M a scalar) (2.14) 

Definition 2.4. An eigenvector A ~ of*kA, that satisfies (2.14) is called 
a basic vector in Xn, and the corresponding eigenvalue M is termed a basic 
scalar. 
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The basic scalars M are solutions of  the characteristic equation 

M ' ~ ( M  . . . .  + K 2 M ' - 2 - ~ +  .- "+ K,_2_,~M2+ K ,  ~ ) = 0  (2.15) 

In each class the nonholonomic frame of  reference may be constructed 
as follows. 

Case 1. First and second classes. In the first two classes we have a set 
of  n linearly independent  basic vectors A" ( i =  1 , . . . ,  n) and a unique 

" i 

reciprocal set A~ (i = 1 , . . . ,  n) satisfying 

A A i v AA = ~ ,  A~A  ~ = 6~ (2.16) 
i i 

With these two sets of  vectors we can construct a nonholonomic frame of 
reference as follows: 

Definition 2.5. 
nonholonomic  components  are defined by 

i 

T~::: = T ~ 2 A ~ . . .  A A . . .  
J 

An easy inspection shows that 

I f  T~2 are holonomic components  of  a tensor, then its 

v... i... ~ J 
z . . A A . .  �9 T~.. Tj...A . 

i 

(2.17a) 

(2.17b) 

Furthermore,  if M is the basic scalar corresponding to A", then the 
nonholonomic compo~aents of  (P)*k~ a r e  given by x 

(P)ekix -- MP~x,i (P)*kx,- = M p *hxi, (P)*k xi~- M p *h ':i (2.18a) 
x x x 

Without loss of  generality we may choose the nonholonomic components  
of  *hx~ as 

*h12 = *h34 . . . . .  *hn-l-,~,,~ ,T = 1 
(2.18b) 

o-*h,~ = a~, remaining *h o = 0 

where the index io is taken so that ]*hij] ~ 0 when n is odd. 

Case 2. Third class. In the third class, the above frame is not available, 
since all M---O in this case, and hence another  nonholonomic frame of 
reference s]~ould be constructed. In the frame of reference of the third class, 
the basic scalar satisfy 

A a * k ~ = A  ~, A a * k ~ = A  ~, A ~ * k ~ = 0 ,  f = 3 , 4 , . . . , n  (2.19a) 
1 2 2 4 f 
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f o r  

components of *h , . ,  when n_>4, as 

* h 2 2  = *']133 = *hss = * h 6 6  . . . . .  *h..  = - * h 1 4  = -1  

remaining *h,~ = 0 

We then have 

*k2, = *k 2 = *k 4 = * k  42 = 1 

remaining *k~, *k{, *k ~ = 0 

( p ) g k  { = ( P ) * k l  I .= ( p ) g k 4 4  = a p  

remaining (P)$kij, ( P ) $ < ,  (P)*k ~ = 0  (p_>2) 

n->4. Without loss of generality we may choose the nonholonomic 

(2.19b) 

(2.19c) 

2.3. Differential Geometric Preliminaries 

In this section we exhibit several results needed in our subsequent 
considerations for the solution of (2.8a). 

If the system (2.8a) admits FS,., it must be of the form 

F A~ ~ v v v " {a,~}+ S~ ,+  UA, (2.20) 

where 

lOO (1o)o 
U~A, = S(~,)~ + 2 S~(,~) (2.21) 

The above two relations show that our problem of determining F~,, in terms 
of *g~  is reduced to that of studying the tensor S~,,. 

On the other hand. it has also been shown that the tensor S~,, satisfies 

(11o) 
S =  B -  3 S (2.22) 

where 

2B,o,~ = K,,~,,,+ 3K~,[~, e *k~ 1 *k~ (2.23) 

In subsequent sections we start with relation (2.22) to solve the system (2.8a). 
Furthermore, for the first two classes, the nonholonomic solution of 

(2.22) is given by 

MS~yz = Bxyz (2.24a) 
x y z  

or equivalently 

4MS~y=xyz = (2+ MM+z x MM)Kxyzz y + M(M+= zlz]~ K-~'~ + M(M+, M ) K  .... (2.24b) 
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where 

M =  1 + M M +  M M +  M M  (2.25) 
x y z  x y y z z x 

Therefore, in virtue of  (2.24), we see that a necessary and sufficient 
conditions for the system (2.8a) to have a unique solution in the first two 
classes is 

M #  0 for all x, y, z (2.26) 
x y z  

3. S O M E  RELATIONS IN n-*g-UFT 

In this section we derive several useful relations in X, ,  mainly recur- 
rence relations. All considerations in this section are for general n > 1. 

Theorem 3.1. (All classes.) We have 

A ~ = J . h a ,  J = A v *h o A~ *h 0 _ , AA * h ~  (3.1) 
i i 

Proof  In virtue of  (2.5), (2.16), and (2.17a), the first relation of  (3.1) 
is given as follows: 

a~ j *h,j *h Av = ~ (*h~13A ~At3)*h~ = r ~(*h~13 *hA~)8~ = a~i �9 

Theorem 3.2. (First and second classes.) In the first two classes, the 
tensor T~.., skew-symmetric in the first two indices, satisfies 

( p q ) r  x y z 

To,~,, = • TxyzM(PMq)M~A,,A~A,, (3.2a) 
x , y , z  x y Z 

r ( p q )  

T.[o.,] Y. (e q )  r x y z = Tx[yz]M M M A . A ~ A .  (3.2b) 
x , y , z  y z x 

where 

2 M ( P M  q) = M P M  q -b M q M  p (3.2c) 
x y x y x y 

Proof  In virtue of (2.17b) and (2.18a), our assertion (3.2a) takes the 
form 

( p q ) r  ( p q ) r  x y z 

T, ,~ = F. Txy z A ~ A , A ,  
x . y . z  

( r ) * k k A  A A 1 T  t . ( p ) , l ~  i (q) ,k jy+(q) ,k ix  ( p ) , k j  ] x y z 
~ 2 i / j k  \ ~ x  - - y ]  " * z - - w -  -/x- - v  

x . y . z  

=~ Y. T~x~(MPMq + MqMnlM~A,~f4.A~ 
x . y . z  x y x y z 

The second relation can be proved in similar ways. 
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Theorem 3.3. (First class.) The main recurrence relation in the first 
class is 

("+P)*k~, + K 2 (n+P-2)*k~ a +" " " + gn-o--2 

which may be condensed to 

(P+O-+2)* k~ -I- K . _ o ,  (P+~)* k~ = 0 

(3.3a) 

n - o -  

Z Kr~"+P-r)*k~ =0  ( p = 0 ,  1 , 2 , . . . )  (3.3b) 
f=0  

Proof  Let M be a basic scalar. Then, in virtue of (2.15), we have 
x 

n (7 

KfM" f = 0  (3.4) 
f=0  

Multiplying by 8~ on both sides of (3.4) and making use of (2.18a), we have 

n - o -  

Y, Kf  ("-Y)*k~ = 0 (3.5a) 
f=o  

whose holonomic form is 

/7--0- 

~. K I ("-Y)*k~ = 0 (3.5b) 
f=o  

The relation (3.3) immediately follows by multiplying by (P)*k~ on both 
sides of (3.5b). �9 

Theorem 3.4. (Second class with j th  category.) The main recurrence 
relation in the second class with j th  category is 

(2J+P)*k~ + K2 (2J+P-2)*k~ +" �9 �9 + K2j (P)*k~ = 0 (3.6a) 

which may be condensed to 

2j 

Kf  (2J+P-Y)*k~ x = 0 (p = 1, 2 , . .  ,) (3.6b) 
1 ~ 0  

Proof  When *gA, belongs to the second class with j th  category, the 
characteristic equation (2.15) is reduced to 

2 j  2 j  

~_, K f M "  f = M "-2j ~., K f M  2j-f = 0 (3.7a) 
f = 0  f = 0  

in virtue of Definition 2.3. Hence, if M is a root of (3.7a), it satisfies 
x 

2j 2j 
0=  My~ K f M  2j-f= Y~ K j M  2j-y+t (3.7b) 

0 x f - O  x 
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Multiplying by 3~ on both sides of (3.7b) and making use of  (2.18a) we have 

with holonomic form 

2j 
E Kf  (~j r+l)*k2 = 0 (3.8a) 

f = O  

2j 
Kf  (2J-f+l)*k~ = 0 (3.8b) 

f=o 

The relation (3.6) follows by multiplying by (P-~)*k~ on both sides of  
(3.8b). �9 

Remark  3.5. As a particular case of (3.6), we have 

(P+2)*k~+K2 (P)*k~ =0  (p = 1, 2 , . . . )  (3.9) 

when *gA, belongs to the second class with the first category. 

Theorem 3.6. (Third class.) The main recurrence relation in the third 
class is 

~P~*kT, =0 (p =3, 4, . . . )  (3.10) 

Proof Relation (3.10) is a direct consequence of putting K 2 = 0  in 
(3.9). �9 

In the following theorem, we prove two relations in X, that hold for 
all classes, These relations are used in subsequent sections, when we are 
concerned with the solution of (2.8a). 

Theorem 3. 7. (All classes.) We have 

(pq)r (pq)r (p'q')r (p'q)r' (pq')r' 

B = S + S + S + S (3.11) 
(pq)r (pq)r r"(pq) (pq')r' (p' q)r' r'p'q r'q'p 

2 B,o~, = K,o~,~ +K,Eogl+�89 K,o~ + K,og~ +K~to,~+K,~o,g 0 (3.12) 

where 

p ' = p +  1, q ' = q + l ,  r ' = r + l ,  r"= r + 2  (3.13) 

Proof In virtue of (2.22) and (2.12), the first relation (3.11) may be 
obtained in the following way: 

(pq)r (pq)r 
-1-B t(P)*'-~ (q)*kt3 + (q)*k~o (P~*k~) (~)*k ~ B = Bog, - 2  ~ t  r~ ..g ,,~ 

1 = ~(S~r + S~,, *k2 *k~ + $4~" *k2 *k~ + S ~ ,  *k;  *k~) 

( p ) ,  a (q)~kl3_f_ . - ~ /  . -v  x ( k,o - .  (q)*k2 (P)*k~] (r):~lcV 
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After a lengthy calculation, we note that the right-hand side of the above 
equation is equal to that of (3.11). Similarly, we can verify (3.12) by using 
(2.12) and (2.23). �9 

4. 3-*g-UFF 

In 3-*g-UFT we have only two classes; the first class, when K2 ~ 0, 
and the third class, when K2 = 0. In 3-*g-UFT relation (2.11b) gives 

g = 1 + K2 (4.1) 

This section is concerned with the three-dimensional *g-unified field 
theory, with emphasis on the nonholonomic frame of reference, recurrence 
relations, and the Einstein connection in the first class. Hence, in this section 
we restrict ourselves to n = 3. 

4.1. Basic Vectors and Nonholonomic Frame of Reference in the 
First Class 

Theorem 4.1. The basic scalars are 

M =  - M =  ( -K2)  1/2, M =  0 (4.2) 
1 2 3 

Proof In 3-*g-UFT, the characteristic equation (2.15) is reduced to 

M ( M  2 + K2) = 0 (4.3) 

from which our assertion follows. �9 

Theorem 4.2. There are three linearly independent basic vectors 
A ~, A ~, A ~, and they have the following properties: 
1 2 3 

(a) They are defined up to an arbitrary factor of proportionality. 
(b) A ~ and A ~ are null vectors and A ~ is nonnull. 

1 2 3 

(c) A ~ is perpendicular to A ~ and A ~. 
3 1 2 

(d) A v and A ~ satisfy the condition 
1 2 

hA .AaA ~" ~ 0 (4.4) 
~ 1  2 
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Proof  Since the basic  scalars M are all distinct, (2.14) admits  three 
i 

l inearly i ndependen t  bas ic  vectors  A ~, which are defined up to an arbi t rary  
fac tor  o f  propor t iona l i ty .  The  first ha l f  o f  s ta tement  (b) is a consequence  
o f  (2.14), (4.2), and 

M * h , ~ A a A  Ix = *k,  ixA*Aix = 0 (x = 1, 2) 
x x x x 

Since M +  M #  0 (x = 1, 2), s ta tement  (c) fol lows f rom (2.14) in the fol lowing 
3 x 

way: 

M * h , ~ A X A  Ix = *ka~,AXA Ix = - M * h  ,AXA Ix 
x x 3 x 3 3 Ix x 3 

In  order  to p rove  s ta tement  (d), consider  a conic C with equat ion  * h, ixxXx Ix = 0 
on a project ive  p lane  P2. In  virtue of  s ta tement  (b), A v and  A ~ are two 

1 2 

different points  on C, and  *h,ixA* = A~ is the tangent  line to C at A v. Since 
1 

[*h ,~[~0 ,  C is nondegenera te .  Consequen t ly  *h, ixA a =  Aix and  aix are not  
2 

incident;  that  is, *h, ixAXA~ O. In  order  to show the last ha l f  o f  s ta tement  
1 2 

(b), a ssume that  *hA A*AIX = 0. Then,  s ta tement  (c) gives 
I X 3  3 

I'h01 = 0 lAq = 0 

which contradic ts  the l inear  i ndependence  o f  A ~. �9 
i 

Agreement  4.3. We m a y  choose  the fac tor  o f  p ropor t iona l i ty  men t ioned  
in T h e o r e m  4.2 as 

*hi2 = *h33 = 1 (4.5) 

This ag reement  is coincident  with (2.18b). 

In vir tue o f  T h e o r e m  4.2 and the above  agreement ,  we have the 
fol lowing result: 

Theorem 4.4. The n o n h o l o n o m i c  c o m p o n e n t s  *h U and *h 'j are given 
by the matr ix  equa t ion  

((*hij)) = ((*hU)) = 0 (4.6) 

0 
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Relation (3.1) together with (4.6) give the following result: 

Theorem 4.5. We have 

2 1 3 1 2 3 
A ~ = A  ~, A ~ = A  ~, A ~ = A  ~, A~=A~, A~=A~, A~=A~ (4.7) 

1 2 3 2 1 3 

As an application of the nonholonomic frame of reference constructed 
in the above discussion, we have the following: 

Theorem 4.6. The representations of *hA., (P)*k~x, (P)*kA., and (P)*k x~ 

in terms of basic vectors are given by 

1 2 3 3 

*h~ = 2A(~A~) + AAA~ (4.8a) 

1 2 
(V)*k~ = MP(A~A ~ + (-1)PAxA ~) (4.8b) 

1 1 2 

1 2 

2MlVA(~A.) if p is even 
(P)* k~  = (48c) 

1 2 

2MPAE~A if p i sodd  

12MPA(~A ~ if is even 
(p),k,X~ = ~ 1 J 2 P 

(4.8d) | 
:yAE A   if p iS odd 

Proof The representations (4.8) follow from (2.17b) in virtue of (4.2), 
(4.6), and (4.7). �9 

4.2. Recurrence Relations in the First Class 

In this section we derive several recurrence relations in addition to 
(3.3), which now in the first class of 3-*g-UFT assumes the form 

( P + 3 ) * k  A ~-- - K  2 ( P + l ) * k  A (p = 0, 1, 2 , . . . )  (4.9) 

Theorem 4.7. The basic scalars M satisfy (x r y) 
x 

MM(M+ M) = 0 (4.10a) 
x y x y 

M M ( M M -  K2) = 0 (4.10b) 
x y x y 

Proof These relations follow easily from (4.2). �9 

Theorem 4.8. (Recurrence relations.) If T~o,~ is a tensor skew-symmetric 
in the first two indices, then the following recurrence relations hold in the 
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first class of  3-*g-UFT: 

(12)r 22r l l r  
T =0,  T = K 2  T (4.11a) 

r(12) r22 r l l  
T~[~ou] = 0, T~[,o~,] = K2 T~[,o~,] (4.1 lb) 

Proof The above relations are consequences of  (3.2) and (4.10). For 
example, the second relation of  (4.11a) can be proved as follows: 

22r 22r T T~u~ • 2 2 r x y z = = TxyzM M M A,,,A~A,, 
x , y , z  x y z 

x y z 

= K2 ~ T~yzMMM~A.A~A~ 
X y Z x , y , z  

l l r  l l r  
= K 2 T ~ , ~ = K 2  T �9 

4.3. Einstein Connection U~,  in the First Class 

In this section we derive two surveyable tensorial representations of 
S ~  and hence F ~  in terms of  *g~,  employing the recurrence relations 
(4.11) and the relations (3.11) and (3.12a). 

Theorem 4.9. A necessary and sufficient condition for the system (2.8a) 
to admit a unique solution F~, is that 

1 - (K2) 2 ~ 0 (4.12) 

Proof Since Mdef ined  by (2.26) is symmetric in x, y, and z and satisfies 
x y z  

M = I ,  M = M = I - K 2 ,  M = M = M = I + K 2  
33x 311 322 123 112 122 

we have the condition (4.12) in virtue of  (2.27). �9 

Theorem 4.10. The system of equations (2.22) is reduced to a system 
of  the following five equations: 

(10)1 110 
B = S + 2  S + S 

(10)1 (10)1 (20)2 112 
B =  S +  S + S  

110 110 
B = ( l + K 2 )  S (4.13) 

(20)2 (1~)1 (20)2 112 
B = (K2) 2 + S - -  K 2 S 

112 112 
B = ( l + K 2 )  S 

Proof This assertion follows from (3.11), using (4.9) and (4.11a). �9 
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(pq)r 
Theorem 4.11. The tensors B.~. 

(pq)r 

K~.~ as follows: 

(10)1 (1.0) 1 1.  (11)2 (20)2 211 101 
2 B,o. ~ = Ko~.~ + ~(K~,~ + Ko.~ + K~t~,~] - K2 K~t. .  ]) 

110 110 
2 B~,~ = K~.v 

(4.14) 
(20)2 (20)2 __  (10)1 112 202 1 Z 2Bo,~,v = ~o~.~ +~[(K2) Ko,.~ - K2 K40,~] - K 2 K 4 ~ ] ]  

112 112 
2B,o~ = K,o~,~ 

Proof. These relations may be obtained from (3.12) in virtue of (4.9) 
and (4.11). �9 

Theorem 4.12. If  the condition (4.12) is satisfied, the unique solution 
of (2.22) is given by 

[ 1 - ( K 2 ) 2 ] ( S -  B)  2(1  1 110 (20)2 1,2 = -  + ( K 2 - 1 )  B + 2  B + 2 B  (4.15a) 

or equivalently 

110 200 
[1 - ( K2)2](2S0,~ - K ~  - K~ t .~] -  K4 .~]  

(10)1 112 (20)2 211 
= - Ko~.~ + Ko~.~ + K o ~  - K ~ . ]  

110 101 112 202 
+(K2 - 1) K,o.~ + K2( K ~ ,  M - K~to,~ ] - K~[.~ ]). (4.15b) 

Proof. Relation (4.15a) is the solution of (4.13), while (4.15b) may be 
obtained by substituting (4.14) into (4.15a) and making use of recurrence 
relations. �9 

Theorem 4.13. The tensor U~. is given by 

[10]0 ( 10)0 
[ 1 - (K2) 2] ( U.A~ - B;,~. - 2 B.(A~) 

[1012 (10)2 [2110 [0211 [2112 
= - K E ( B X ~  + 2B~(A.)) + ( K 2 -  1) Bx~ ~ + Bx.~ + Bx.~ 

(2o)1 H1 
-2B~(~)  - 2 B~(A~) (4.16a) 

or equivalently 

LOl]O 2 ~ ) o  
[1 - ( K 2 ) 2 ] ( 2 U ~ ,  + K ~ -  ~(A~,) 

[2110 [_0_211 ~112 
= (K 2 - 1)Kx~ + KA~ ~ + K 2 -~x.~ 

(10)2 (20)1 111 
--2(K2 K~(A~)- K~(A~)- K~(~,,)) (4.16b) 

are given as linear combinations of 
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Proof. The representations (4.16) are direct consequences of  substitut- 
ing (4.15) into (2.21). �9 

Now that we have obtained the tensors S~, and U~. in terms of ,gay, 
it is possible to determine F~,  by only substituting for S and U into (2.20). 

4.4. The Third Class 

In this section we discuss the algebraic and differential geometric 
properties of  the third class of  3-*g-UFT. 

The third class o f3 -*g -UFT was studied by Chung et al. (1980, 1981a,b). 
Since most results in 3-*g-UFT are similar to Chung's  results in the third 
class, we simply state them without proof. 

Theorem 4.14. There is a one-parameter  set consisting of three linearly 
independent  real vectors A ~, A ~, A" 1 2 3 ' which satisfy the following relations: 

*k~A A = O, *k~Aa, = A~'2 *k~AA3 = A~, (4.17) 

((*ho)) = ((*hO)) = ( !  

Theorem 4.15. We have 

0Z) 
0 - 

- 1  

1 3 2 
A ~ = A ~, A ~ = - A  ~, A ~ = - A  ~ 
1 2 3 

1 2 3 
A A : A x ,  A ~ = - A ~ ,  A A = - A A  

1 

(4.18) 

(4.19) 

The nonholonomic components  (P)* k~, (P)* kq,  and (P)* k ij Theorem 4.16. 
are given by 

*kl 2 = *k I = * k 3 1  = - * k 1 3  = * k  12 = - * k  21 = 1 

<P)*/32 = - ( P ) * k 3 3  = - ( P ) * k  22 = t~2 p (p = 1 ,  2,...) (4.20) 

remaining = 0 

Theorem 4.17. The tensors *ha., (P)*k~, <P)*kA., and (P)*k A~ may be 
expressed in terms of the basic vectors as follows: 

1 1 2 3 
*ha. = A~A.  - 2A(aA~ ) (4.21a) 
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1 3 3 

(P)*k~ = 6~(A~A ~ + AAA ~) + 6 ~ A x A  ~ 

3 1 3 3 
( p ) * k x  ~ p p = 2 6 1 A ( ~ A . ) -  6 2 A ~ A .  

( p ) * k  ~" = 2 8 { A ( a A  ~') _ 8~AXA ~ 
1 2 2 2 

(4.21b) 

(4.21c) 

(4.21d) 

namely  

1 1 200 
S ~  = ~K~,~ + ~Kao,~q (4.25) 

Proo f  From (3.12) and (4.23) we have 

11o ( lo) t  
B = B = 0  (4.26a) 

so that  

11o (IO)1 
S = S = 0  (4.26b) 

(12)r 
T = 0  

( p q ) r  

22r 
T = 0  

nr 3 1 x (~)*k- 
To,~,~ = 2 Y~ T12iAt,oA~1A~ 

x 

~co20)r 1 3 ~ ( ~ ) , k i  
~,~ = y, T12iA~,oA~IAv 

x 

(422a) 

(4.22b) 

(4.22c) 

(4.22d) 

( lO)r 3 2 1 3 x 
T,o~,, = ~  (T12iAt~,A~]+ T23iAco, A~1)A,, (r~*k~ (4.22e) 

x 

Theorem 4.19. The fol lowing relations hold: 

002 (10)1 ( 1 ~ 2  (12)r 22r llr ( ~ r  121 022 
K =  K = = K = K =  K =  = K =  K = 0  (4.23a) 

K = 0 if at least one of  p, q, r is >-3 (r  = 0, 1, 2 , . . . )  (4.23b) 

Theorem 4.20. We have 
200 

2 B ~  = Ko,~ + K~[~]  (4.24) 

Theorem 4.21. The system (2.22) a lways admits  a unique solution,  

Theorem 4.18. I f  T o ~  is a tensor  skew-symmetr ic  in the first two indices,  
we have ( r = 0 ,  1 , 2 , . . . )  
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Comparing (4.26b) and (2.22), we finally have (4.25). �9 

5. 5-*g-UFT. THE FIRST AND SECOND CLASSES 

In 5-*g-UFT there are three classes; the first class when K 4 ~ 0, the 
second class when K4 = 0 and K2 ~ 0, and the third class when K4 = K2 = 0. 
In this case, relation (2.11b) gives 

g =  1 + K 2 +  K4 

In this section we investigate the first two classes of  5-*g-UFT. Hence 
all considerations in this section are restricted to n = 5. 

5.1. Basic Vectors and Nonholonomic Frame of Reference 

Agreement 5.1. For the simplicity of  our discussion, we assume in this 
and in what follows that 

g 4 ~ 0  (5.1) 

Theorem 5.2a. 
given by 

where 

(First class.) In the first class, the basic scalars are 

M=-M=(-L-K)I/2 ~O 
1 2 

M=-M=(L-K)~/2#O, M = 0  
3 4 5 

(5.2) 

K = K2/2, L = [(K2/2) 2 - K 4 ]  1/2 (5.3) 

Proof For the first class of  5-*g-UFT, the characteristics equation 
(2.15) is reduced to 

M ( M 4 + K 2  M2+K4)  = 0 (5.4) 

from which our assertion follows in virtue of (5.1) and (5.3). �9 

Theorem 5.2b. (Second class.) In the second class the basic scalars are 
given by 

M = - M = ( - K e ) 1 / 2 ~ O ,  M = M = M = O  (5.5) 
1 2 3 4 5 
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Proof. Relations (5.5) are simple consequences of  substitution of K 4 = 0 
into (5.2). �9 

Theorem 5.3. In the first two classes there are five linearly independent 
, A ~ which have the following properties: basic vectors A , . . .  5 ' 

1 

(a) They are defined up to an arbitrary factor of proportionality. 
(b) A~ , . . . ,  A ~ are null vectors, while A ~ is nonnull. 

1 4 5 

(c) A ~ and A ~ are perpendicular to A ~ and A ~. And A ~ is also 
1 2 3 4 5 

perpendicular to A~ , . . . ,  A ~. 
1 4 

(d) They satisfy the conditions 

*hx~,AXA ~ ~ 0, *hx~AXA ~ ~ 0 
1 2 3 4 

(5.6) 

Proof. The proof  follows by a similar pattern to that of Theorem 4.2. �9 

The following theorem immediately follows from the above theorem. 

Theorem 5.4. In the first two classes, the factor of  proportionality 
mentioned in Theorem 5.3(a) may be chosen in such a way that the 
nonholonomic components *h~ s and *h ~ are given by 

((*h~))= ((*hU))= 

01001) 1 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 0 0 

Relation (3.1) together with (5.7) give the following result: 

Theorem 5.5. (First and second classes.) We have 

(5.7) 

2 1 4 3 5 

A ~ = A  ~, A " = A  ~, A ~ = A  ~, A ~ = A  ~, A ~ = A  ~ 
1 2 3 4 5 

1 2 3 4 5 

A x = A x ,  Aa=Ax,l  Ax=Ax'4 a x = A x '  A x = A A  

(5.8) 

As an application of the nonholonomic frame of  reference constructed in 
the above, we have the following theorem. The representations are con- 
sequences of  (2.17b), (5.2), (5.7), and (5.8). 
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Theorem 5.6. In the first two classes, the tensors *ha,, (P)*k~, (P)*kx~ , 
and (P)*k ~ may be expressed in terms of basic vectors as follows: 

1 2 3 4 5 5 

* h~. = 2A(aA.) + 2A(aA~) + AxA.  (5.9a) 

(p ) ,  k V x 1 2 3 4 = MP[AaA " + ( -  1 )PAaA"] + MV[A;~A " + ( -  1 )PAaA"] 
1 1 2 3 3 4 

(5.9b) 

I 3 4 
1 2 +2MPA(xA,~) if p is even (P)*ka~- 2MPA(xA~') 

- -  1 2 3 4 

[2MPAtxA,3+ 2MPAtxA,3 if p is odd 
(5.9c) 

f2MVA(XA~)+2MPA(XA ~) if p is even 
(p),kX,, = ~ t 1 2 3 3 4 

[2MVA[XA~1+2MeA~XA ~1 if p is odd 
- -  1 1 2 3 3 4 

(5.9d) 

5.2. Recurrence Relations 

In this section we derive several useful and powerful recurrence rela- 
tions in addition to (3.3) and (3.6), which now in 5-*g-UFT take the form 
( p = 0 ,  1 ,2 , . . . )  

(P+5)*k~ = -K2  cP+3)*k~ - K 4  (P+l)*k,~ for  first c lass  

(P+3)*k~ = - K  2 (P+l)*k~ for  s e c o n d  class.  

(5.10a) 

(5.10b) 

The following two theorems are simple consequences of  (5.2) and (5.5). 

Theorem 5. 7a. (First class.). In the first class the basic scalars Msatisfy 
x 

M +  M =  M +  M = 0, 
1 2 3 4 

M M = M M = M M = M M = O  
1 5  2 5  3 5  4 5  

(5.11a) 

(5.11b) 

(5.11c) M~M 2 = M 2 M  2 =  M 2 M  2 =  M 2 M  2 = K 4  
1 3 1 4 2 3 2 4 

M2+ M 2 = M 2 +  M 2 = M 2 +  M 2 = M 2 +  M 2 = - K  2 (5.11d) 
1 3 1 4 2 3 2 4 
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Theorem 5.7b. (Second class.) In the second class the basic scalars M 
satisfy (x, y = 3, 4, 5) x 

M +  M =  M+ M =  0 (5.12a) 
1 2 x y 

MM= K2, 
1 2 

MM= MM= MM= 0 (5.12b) 
1 x 2 x x y 

In virtue of Theorems (5.7a) and (5.7b) we have 

Theorem 5.8a. (First class.) In the first class, the following identities 
hold for all values of x and y when x ~ y: 

M(4M l) = - M ( 3 M  2)-  K2 M(2M 1) (5.13a) 
x y x y x y 

M(4M 3) = K4 M(2M 1) (5.13b) 
x y x y 

M4M = (K4)2MZM2+ K2 M3M3+2K4 M(3M ~) (5.13c) 
x y x y x y x y 

2M(4M 2) = - M 3 M  3 - K2 M2M2 + K4 M M  
x y x y x y x y 

Furthermore, we also have 

(5.13d) 

K4 M(4M1)+ K2 M(4M 3)= - K 4  M(2M 3) 
x y x y x y 

(5.14a) 

K2 M4M4+ 2K4 M(4M 2)= [(K2) 2 -  K4]M3M3+ 2K2K4 M(3M a) 
x y x y x y x y 

+ (K4) 2 MM 
x y 

(5.14b) 

M4M4+ 2K2 M(4M 2) --- [K  4 - (K2)2]M2M2 -.I- 2K4Mr ~) 
x y x y x y x y 

+ K2K4 MM 
x y 

Proof In order to prove (5.13a), consider 

d e f  

B = M M ( M + M ) ( M 2 + M  z) 
x y x y x y 

In virtue of (5.11d), we have 

(5.14c) 

B = - 2 K 2  M~2M 1) (5.15a) 
x y 
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On the other hand, direct algebraic calculation gives 

B = 2M(4M 1) + 2M(3M 2) (5.15b) 
x y x y 

Thus, comparison of  (5.15a) with (5.15b) yields (5.13a). For the proof  of 
(5.13b), we consider 

M M ( M +  M ) M 2 M  2 
x y x y x y 

and use the same pattern as the proof  of  (5.13a), making use of (5.11c). In 
order to prove (5.13c), put 

d e f  

C = M M ( M +  M)(M4M+ M M  4) 
x y x y x y x y 

Making use of  (5.13a) and (5.10a), we have 

C = -4M(2MI) (M(3M 2) + K 2 M(2M 1)) 
x y x y x y 

= - 2 ( M ( S M  3) + M 4 M  4+ K2 M(4M 2) + K2 MaM 3) 
x y x y x y x y 

= 2(K2 M (3 + K4 M ~l)M 3) - 2M4M 4 - 2K2 M(4M 2) - 2K2 M 3 M  3 
x x y x y x y x y 

= 2K4 M(1M 3) - 2M4M 4 - 2K2 M(4M 2) 
x y x y x y 

On the other hand, direct algebraic calculation gives 

C ~- 2M(6M 2) + 2M(SM 3) 
x y x y 

(5.16a) 

--- -2 (K2 M(4+ K4 M(2)M z ) -  2(K2 M(3+ K4 M ~  3) 
x x y x x y 

= -2K2 M(4M 2) - 2 K 4  M 2 M 2 - 2 K 2  M 3 M  3 - 2 K 4  M(~M 3) (5.16b) 
. x  Y x y x y x y 

Comparing (5.16a) and (5.16b), one gets (5.13c). Finally, consider the 
following form in order to prove (5.13d): 

d e f  
D = M M ( M +  M ) ( M 4 M  3 + M3M 4) 

x y x y x y x y 

The relation (5.13b) gives 

D = K4(M2M+ M M  2) - 2K4 M(4M2)+2K4 MaM 3 (5.17a) 
x y x y x y x y 

while by a direct algebraic calculation making use of (5.10a) and (5.13c) 
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we have 

D = 2 M ( 6 M  4) + 2MSM s 
x y x y 

= -2(K2 M(4+ K4 M(2)M4)W2(K2 M 3+ K4 M)(K2 M 3 +  K4 M) 
x x y x x y y 

= - 2 K 2 ( K 2  M 3 M  3 + K4 M 2 M  2 + 2K4 M(3M 1)) - 2KzK4 M ( 2 M  4) 
x y x y x y x y 

+ 2(K2)2M3M 3 + 2(K4)2MM+ 4K2K4 M(3M 1) 
x y x y x y 

= -2K2K4 M 2 M  2 - 2K4 M(2M4) + 2(K4)2MM (5.17b) 
x y x y x y 

Since K4#  0, comparison of (5.17a) and (5.17b) gives (5.13d). The relations 
(5.14) are direct consequences of (5.13). �9 

Theorem 5.8b. (Second class.) In the second class the following iden- 
tities hold for all values of x and y when x ~ y: 

M2M 2= K z M M  (5.18a) 
x y x y 

M(2M ~) = 0 (5.18b) 
x y 

Proof The assertions in this theorem are direct consequences of 
(5.12). �9 

Now we are in a position to establish the following recurrence relations, 
which may be proved simultaneously. 

Theorem 5.9a. (First class.) If To,,~ is a tensor skew-symmetric in the 
first two indices, then the following recurrence relations hold in the first class: 

( 4 1 ) r  ( 3 2 ) r  ( 2 1 ) r  

T = -  T - K 2  T (5.19a) 
( 4 3 ) r  ( 2 1 ) r  

T =K4 T (5.19b) 
4 4 r  2 2 r  3 3 r  ( 3 1 ) r  

T = K4 T + K2 T + 2K4 T (5.19c) 
(42 ) r  3 3 r  2 2 r  l l r  

2 T = -  T - K 2  T + K 4  T (5.19d) 

Furthermore, the following identities also hold in the first class: 
( 4 1 ) r  ( 4 3 ) r  ( 23 ) r  

K 4 T +Kz  T = - K 4  T (5.20a) 
4 4 r  ( 4 2 ) r  33 r  ( 3 1 ) r  l l r  

Kz T + 2 K 4  T =[ (K2)Z-K4]  T + 2 K z K 4  T +(K4) z T (5.20b) 
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44r (42)r 22r (31)r 1 lr  
T + 2 K 2  T =[K4-(K2)2]T+2K4 T +K2K, T (5.20c) 

Theorem 5.9b. (Second class.) If  T~o,~ is a tensor skew-symmetric in 
the first two indices, then the following recurrence relations hold in the 
second class: 

( 2 1 ) r  

r = 0  (5.21a) 
(22)r l l r  

T =K2 T (5.21b) 

Proof The proofs of  the above two theorems follow from (3.2a), (5.13), 
and (5.18). For example, the relation (5.19a) may be obtained as follows: 

(41)r (41)r 
T . . v  = ~ • (4 1) r x y z T = TxyzM M M Ao~A~,A~ 

x , y . z  x y z 

(2 1) r x y z = ~ Txyz(-M(3M 2)-K2 M M )M Ao~A~A~ 
x , y , z  x y x y z 

(32)r (21)r (32)r (21)r 

= - To~ v - K 2  T.~,v = - T - K 2  T 

5.3. Einstein Connection U~ ,  

In this section we obtain surveyable representations of F ~  in terms of 
*gX", using the recurrence relations derived in the preceeding section. 

Theorem 5.10a. (First class.) A necessary and sufficient condition for 
the existence and uniqueness of  the solution of  (2.8a) in the first class is 

gAB( C2-4K4 D2) ~ 0 (5.22) 

where 

A =  1 - K 2 +  K4, B =  1 -K4 (5.23) 

C = 1 - -  K 2 + 5 K 4 ,  19= K 2 - 2  (5.24) 

Proof In virtue of  (5.2) and (5.3), the symmetric scalars M defined by 
x y z  

(2.26) take the values shown in Table I. It may be easily verified that the 
product  of  two factors in the first row in Table I is g, that of the five factors 
in the second row is ( 1 - K 2 + K 4 ) ( 1 - K 4 ) ,  and that of the four factors in 
the third row is ( 1 -  K2+5K4)2-4K4(K2-2) 2. Hence we have proved our 
assertion (5.22) in virtue of  (2.26), (5.23), and (5.24). 

Theorem 5.10b. (Second class.) A necessary and sufficient condition 
for the existence and uniqueness of  the solution of (2.8a) in the second 
call is 

1 - (K2) 2 ~ 0 (5.25) 
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Table I 

1129 

Values of indices x, y, z M xyz 

Two of the indices x,y, z are 1, 2 or 3, 4 

At least one of x, y, z is 5 and no two take 
the values 1, 2 or 3, 4 

The remaining cases 

I + K + L ,  I + K - L  

I-K +L, I-K-L, I+'/-~n, I -~4 ,1  

l - K - L - 2 ~ 4 ,  1 -  K + L - 2 ~ 4 ,  
1 - K - L + 2 ~ 4 ,  1 - K  + L + 2 ~ 4  

Proof The assertion of  this theorem may be obtained by simply sub- 
stituting K 4 =  0 into (5.22) and (5.23). [] 

Theorem 5.11a. (First class.) The system of  equations (2.22) is reduced 
to the fol lowing 25 equations: 

110 (10)1 
B = S +  S + 2  S 

(1~1 (1})1 ..F (2~)1- (20)2 112 
= S + S  

(1~1 (1})1+ (2})1 222 (13)2 
+S+S 

(2O)2B = (2})2+ (3})2- F (3~)3..~_ (2~)3 

2(2~1 = 2(2~1 (21)1 332 112 222 
+ 2 K  4 S + S + K  4 S - K 2  S 

(13)2 (13)2 112 222 332 (21)3 
2 B = 2  S + K 4  S - K  2 S -  S - 2 K 2  S 

(30)3 (30)3 (2})3 __ (32)3 (3})4 
B = S - K2 S -]- (4})4-t- 

(21/3 (2})3+(32)3 ~--- S -{-(3~4"~- 22S4 

(32)3 (3})3 (21)3 114 224 334 
2 B = 2  + 2 K  4 S + K  4 S - K  2 S + S 

(40)4 (40)4 (31)4 114 (3})3 (10)3 (3})1 
B = S - K 2 S - K 4 S + K2 + K 2 K 4  S + K 2 K  4 

+ K4 (I})I + (21)3 (2~I "F (32)3 (32)1 
K 2 S + K 2 K  4 K 2 S + K  4 S 

(3~4 _ 2 (3~;)4 + (21)3 (21)1 114 224 334 
2 - 2K2 S +2K2K4 S + K 4  S - K 2  S -  S 

(10)3B= (10)3S -~- (21)3S -F (2})4+ 114S 
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(3O)lB= (3~)1 -K2 (21)15 - (32)15 "~ (40)25 "~- (31)25 

(20)4 (3~3 (3~1 (2~3 (21)1 l ( 2~4 .~_ (31)4 
= S - K 2  - K 4  - K 2  - g  4 S 

(40)2 (4~)2 __ (3~2 112 (3~)3 (1~3 (2~)3 (3~3 
B = K 2 - g 4 S - K 2 - K 4  - K 2  - 

( 5 . 2 6 )  

110 110 220 (21)1 
B =  S +  S + 2  S 

112 112 222 (21)3 
B =  S +  S + 2  S 

222 222 332 (32)3 
B =  S +  S + 2  S 

332 
B =  

224 
B =  

114 
B =  

334 
B =  

220 
B =  

332 222 (21)3 (3~)2 
( l+K2)  S +K4 S +2K4 S +2K4 

224 334 (32)3 (32)1 
S+ S - 2 K 2  S - 2 K 4  S 

114 224 (21)3 (21)1 
S+ S - 2 K 2  S - 2 K 4  S 

334 224 (31 )4" ( 21 )3 (2~) 1 
( l+K2)  S + K  4 S + 2 K  4 S -2K2K4 S -2(K4) 2 

220 330 (3~)1 
S +  S + 2  

330 330 220 (31)0 (2~1 
B = ( l + K 2 )  S+K4 S+2K4 S +2K4 

(31)0 (31)0 110 220 330 (2~)1 
2 B =2  S +K4 S - K  2 S -  S - 2 K 2  

Proof This assertion follows from (3.11) using (5.10a), (5.19), and 
(5.20). �9 

Theorem 5.11b. (Second class.) The system of equations (2.22) is 
reduced to the following five equations: 

B S + 2  (1S1 + o )  110 
= S 

(1~1 = ( ,~)t+ s + 112 

(2~2= (K2) 2 (1~1+ (20)2S - K 2  ,12S 

110 110 
B = ( l + K 2 )  S 

112 112 
B = ( l+K2)  S 

(5.27) 
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Proof. The above equations may be obtained from (3.11), using (5.10b) 
and (5.21). 

Theorem 5.12a. (First class.) If the condition (5.22) is satisfied, the 
unique solution of (2.22) is given by 

g A B ( C  2 - 4K4D2)(S - B) = (1 - K2 + 5K4)B+ 211 - 2K2 + (K2) 2 - 5K4] B 
1 2 

where 

+ 2 (K2  - 2) B (5.28a) 
3 

222 (20)2 (20)4 (10)1 112 
B = - B + 2 (  B WK 4 B - B + B ) + ( K 2 - 1 )  
1 

220 114 224 
[ B + K  4 B +3K2(g4) 2 B] 

220 330 (31)4 (1~3 
+K412 B - K 4 B -  B +2(K2) 2 B + K 2 K ,  (4~2+4 

,12 (,0)3 ~1~1) 
+ K 2 ( B + 2  B - 4 K 4  

+ [ ( K 2 ) 2 _ l +  K4]( 2 (1~1 11o --  B q- K 4 (2~4) 

220 332 ~ 330 
+ ( K 2 - 1 + 2 K 4 ) [  B +K4 B +2(K2)~K4 B] (5.28b) 

(12)3 (10)3 (30)1 ( 2] 112 
B=2[(K4)2B+ B +K4 B +(K4) 2 B - K 4  2~ +K2 B 
2 

334 (4~4] 222 
+( l+Kz) [2K4  (1~1+(K4)2 B + 3 K  4 - B 

220 (31)0 (13)2 (30)3 
- K 4 [ B + K 2  B +2(K2) 2 B +K2K4 B ] 

(12)1 110 
+ ( l + K 2 ) ( l + 3 K 4 ) ( 2  B - B) (5.28c) 

(12)3 112 220 (3~0] 
B = ( K 4 ) 2 B + 2  B +[2K4- (K2)  2 ] B + K 2 [ B + ( K 4 )  2 
3 

220 (2~2 ( 3 ~ 3 +  . . -  (32)3 
- } - g 4 [ g  2 n - 2  ( I n l - ~ 2  - ( g 2 )  2 ~(~2/~4 n ] 

110 330 334 
+ K, [2+2K2- (K2)~] (  B + K2 B - K  4 B )  

(10)3 220 (10)1 ( 1] 
- K 4 ( l + K 2 ) [ 2  B - B - K 2  B +(K2) 2 2~] . (5.28d) 

Proof Equations (5.28a)-(5.28d) represent the solution of the system 
(5.26). This solution was obtained by using the Gauss-Jordan elimination 
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method, employing the MV/8000 II Super-Mini-Computer at Jeonju Uni- 
versity. �9 

Theorem 5.12b. (Second class.) If the condition (5.25) is satisfied, the 
unique solution of (2.22) is given by 

[1 (K2)2](S-B)=-2  ( ~ '  " l l O  ( 2 0 ) 2  112 - + ( K 2 - 1 )  B + 2  B +2 B (5.29) 

Proof Equation (5.29) is the solution of the system (5.27). �9 

Now that we have obtained the tensors S~, in terms of *gX~, it is 
possible to determine the tensor U~, by (2.21) and the connection F~, by 
only substituting for S and U into (2.20). 

6. THE THIRD CLASS OF n-*g-UFF FOR n>_4 

In this section we investigate the third class of n-*g-UFT. All consider- 
ations in this section are for general n > 4. 

6.1. Basic Vectors and Nonholonomic Frame of Reference 

Theorem 6.1. The basic scalars M are given by 
x 

M . . . . .  M =  0 (6.1) 
1 n 

Proof For the third class of n-*g-UFT, the characteristic equation 
(2.15) is reduced to 

M n = 0 (6.2) 

from which our assertion follows. �9 

The following theorem immediately follows from (2.19b). 

Theorem 6.2. The nonholonomic components *hij and *h ij are given 
by the matrix equation 

((*ho)) = ( ( * h  ~))  = 

tO 0 0 1 0 

0 -1 0 0 0 

0 0 -1  0 0 

1 0 0 0 0 

0 0 0 0 -1  
-1  

0 

-1 

(6.3) 
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The relation (3.1) together with (6.3) give the following result: 

Theorem 6.3. We have (i = 2, 3, 5 . . . .  , n) 

4 1 i 1 

A ~ = A ~, A v = A ~, A ~ = - A  ~, AA = AA, 
1 4 i 4 

4 i 

Ax = An, Aa = -Ax (6.4) 
1 i 

As an application of the nonholonomic frame of reference constructed 
in the above, we have the following: 

Theorem 6.4. The tensors *hx~, (P)*k~, (P)*k;t~, and (P)*k x~ may be 
expressed in terms of basic vectors as follows (p = 1, 2 , . . . ) :  

1 4 n x x 

*hA~ =2A(~A. ) -  ~ A~A~ (6.5a) 
x = 2 , 3 , 5  

(P)*k~ 1 2 1 
= 6~(A;,A ~ + AAA ~) + 6PzAxA ~ (6.5b) 

2 4 4 

2 1 1 1 

(P)*kxg = 28P At aA~ I + 6~ AxA~ (6.5c) 

(t~*kX~ = 26PAEaA ~j + 6~AAA ~ (6.5d) 
4 2 4 4 

Proof The  relations (6.5a)-(6.5d) follow from (2.17b) in virtue of (6.3), 
(6.4), and (2.19c). �9 

0,q)r 
6.2. Recurrence Relations and the Tensor K o ~  

In this section we derive several recurrence relations in addition to 
( p q ) r  

(3.10) and investigate the properties of the tensor To,~, which we need in 
the next section. 

Theorem 6.5. (Recurrence relations.) If  T , ~  is a tensor skew-symmetric 
in the first two indices, then the following recurrence relations hold in the 
third class of n-*g-UFT: 

( 1 2 ) r  

T = 0  (6.6a) 

2 2 r  

T = 0 (6.6b) 

The proof  of (6.6a) and (6.6b) is based on the following relations: 
( p q ) r  x y z 

T~y~ Ao~AuA~ 

Proof. 
( p q ) r  

x , y , z  

9 

=�89 
x ,y , z  

(r)*kka A a (6.7) Tok((P)*k i Cq)*kJy+~q)*k~ (P)*Uy) ~ y ~ 
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In virtue of  (6.7), (2.19c), and the skew-symmetry of the tensor T,o,~, we 
can derive (6.6a) and (6.6b) in the following way: 

(12)r  x y z T~,~=�89  Y~ , i (27* ; (27 i ,  T i j k (  kx k y +  S k x  k y )  ( r ) * k k A  A A 
x,y,g 

k 1 1 z 
= �89 E ( T24k + T42k) (r)*kzAo, A~A~ = 0 

z 

22r 
T~,,~ = ~ Tijk (2)*k~ (e)*kJy (r)*kkz A,o ~ A , A ~  ~ ~ 

x,y,z  

E T 4 4 k  ( r )*kk z  x y z = A,o AgA~ = 0 
g 

Theorem 6.6. The following relations hold (r = 0, 1, 2 , . . . )  

K I [ 2 4  ] ~--- K 4 3 4  ~-- K 3 4 3  = 0 (6.8a) 

111 121 (02)2 112 122 22r ( ~ r  
K =  K =  K = K =  K =  K =  = 0  (6.8b) 

(pq)r  

K = 0 if at least one of  p, q, r is ->3 (6.8c) 

Proof. Relation (6.8a) is a direct consequence of (2.10e) and (2.19c). 
The relations (6.8b) are consequences of  (6.7) and (2.19c). For example,  
the second relation of  (6.8b) may be proved as follows: 

121 " k x y z 
K,o,,o = ~ Kijk *k~ (2)*kJ *k a A a �9 ~y "*z '=to-- I . t '=v 

x,y,z  

1 1 1 1 1 2 2 1 1 2 1 2 

= K242Ao, A , A ~  + K244A,oA,A~ + K442A,oA~A~ + K444A,oAt, A~ 

1 1 1 1 1 2 
= K224A,,,A~A~ - K442A,o Aj.A,, = 0 

The relation (6.8c) follows easily from (6.7), using (3.10). [] 

6.3. Einstein Connection F ~  

In this section we obtain a simple tensorial representation of F ~  in 
terms of *g*~, using the recurrence relations and results derived in the 
preceding section. 

Theorem 6. 7. We have 

112 (20)2 
B =  B = 0  (6.9a) 

'4 
= = 0 (6.9b) 



Geometry of Einstein's *g-Unified Field Theory 1135 

Proof. Relation (6.9a) is obtained from (3.12) by using (6.8b) and 
(6.8c). Relation (6.9b) also may be obtained from (3.11) by using (3.10) 
and (6.9a). �9 

Theorem 6.8. The  solution of (2.22) is given by 

S -= B - 3  (6.10) 

Proof. From (6.6a), (3.11), and (6.9b), we have 

(110) (110) 
S = B (6.11) 

Comparing (2.22) and (6.11), one gets (6.10). �9 

(pq)r 
Theorem 6.9. The  tensor U : .  is given by a linear combination of Bx.v: 

UvAp :[nA]~176 2((nlv'(~ ~l(1Atx) ) (6.12) 

Proof Relation (6.12) follows from (2.21), making use of  (6.8b), (6.8c), 
and (6.10). �9 

Now that we have obtained the tensors S:~ and U ~  in terms of *g~", 
it is possible to determine the connection F~, by substituting for S and U 
into (2.20). 

Theorem 6.10. The  Einstein connection F~, in n-*g-UFT is given by 

(11o) [1o]o [o211 D2]o (ol)o [o211 
F x . =  { x . } + B x . - 3 B x . + B x . + B x . + B a ~ + 2 ( B ~ a ~ ) - B ~ x ~ ) )  (6.13) 
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